Phase-change materials exhibit fast and reversible transitions between an amorphous and a crystalline state at high temperature. The two states display resistivity contrast, which is exploited in phase-change memory devices. The technologically most important family of phase-change materials consists of Ge-Sb-Te alloys. In this work, we investigate the structural, electronic and kinetic properties of liquid Ge2Sb2Te5 as a function of temperature by a combined experimental and computational approach. Understanding the properties of this phase is important to clarify the amorphization and crystallization processes. We show that the structural properties of the models obtained from ab initio and reverse Monte Carlo simulations are in good agreement with neutron and X-ray diffraction experiments. We extract the kinetic coefficients from the molecular dynamics trajectories and determine the activation energy for viscosity. The obtained value is shown to be fully compatible with our viscosity measurements.

Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state / Schumacher, M; Weber, H; Jovari, P; Tsuchiya, Y; Youngs, Tga; Kaban, I; Mazzarello, R. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 6:(2016). [10.1038/srep27434]

Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state

Mazzarello R
2016

Abstract

Phase-change materials exhibit fast and reversible transitions between an amorphous and a crystalline state at high temperature. The two states display resistivity contrast, which is exploited in phase-change memory devices. The technologically most important family of phase-change materials consists of Ge-Sb-Te alloys. In this work, we investigate the structural, electronic and kinetic properties of liquid Ge2Sb2Te5 as a function of temperature by a combined experimental and computational approach. Understanding the properties of this phase is important to clarify the amorphization and crystallization processes. We show that the structural properties of the models obtained from ab initio and reverse Monte Carlo simulations are in good agreement with neutron and X-ray diffraction experiments. We extract the kinetic coefficients from the molecular dynamics trajectories and determine the activation energy for viscosity. The obtained value is shown to be fully compatible with our viscosity measurements.
2016
Phase-change materials; crystallization process; structural properties
01 Pubblicazione su rivista::01a Articolo in rivista
Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state / Schumacher, M; Weber, H; Jovari, P; Tsuchiya, Y; Youngs, Tga; Kaban, I; Mazzarello, R. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 6:(2016). [10.1038/srep27434]
File allegati a questo prodotto
File Dimensione Formato  
Mazzarello_Phase-change-material.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 5.42 MB
Formato Adobe PDF
5.42 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1465692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 34
social impact